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AXIOMS FOR WEIGHTS

The weighted linear model is used to represent an individual's

judgments and decisions in many diverse approaches to judgment and

decision making (e.g., see Hammond, McClelland, & Mumpower, 1980).

This convergence on a common model should provide an important source

of agreement among different approaches. Instead, the weighted linear

model has often been the battlegromd for arguments between proponents

of the various approaches. For example, the model has been

operationalized in a variety of ways, each claimed to be superior by

its proponents. There is an especially wide variety of methods for

measuring the weight parameters in the model. There is also much

disagreement about the interpretation of weights. Some approaches

treat weights as mere scaling constants with no psychological content

(e.g., Keeney & Raiffa, 1976) or as "empirically empty parameters"

(Schinemann, Cafferty, & Rotton, 1973). On the other hand, proponents

of other approaches claim that weight parameters are empirically

identifiable and are psychologically meaningful in that they reflect

relative importance or salience (e.g., Anderson, 1970, 1973; Hammond,

Stewart, Brehmer, & Steinmann, 1975). Clearly, the potential

agreement suggested by the ubiquitous use of the weighted linear model

has not been achieved.

The purpose of this paper is to provide an axiomatization for the

* weighted linear model. The axiomatization provides necessary and

sufficient conditions for a particular case of the weighted linear

model, thereby furthering fundamental understanding of the model

p itself. The axiomatization should aid in the effort to identify
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AXIOMS FOR WEIGHTS 2

common ground and sources of disagreement among various approaches to

judgment and decision making.

The organization of this paper is as follows: (1) definition of

the weighted linear model; (2) a consideration of five psychologically

important characteristics of the concept of weight, a concept central

to the weighted linear model; (3) a description of the conditions

under which the axiomatization is applicable; (4) an illustrative

example; (5) the axioms; (6) the theorems; (7) scaling procedures; and

(8) discussion and implications.

The Weighted Linear Model

Because the weighted linear model appears in so many guises under

diverse names in the various approaches, we will first establish a

coon formal definition of the model. The representation of the

weighted linear model which we will use is as follows: there are

several attributes (or cues or factors or dimensions, depending upon

the approach) Xl, X2 ,...,"X, and each is associated with a

numerical weight wi and a real-valued function fi such that

the numerical value assigned to the alternative (or stimulus complex

or profile) represented by (x1, x2 1..., Xk) is given by

k
F(x I, x2 , ., = Yw'f ME1 W1

Si=lw .(.)(E.)

Anderson (1970, 1974) refers to this model as the "averaging model".

Because we will focus on the two-attribute case, it is convenient

to introduce a simpler notation for that case. Let one attribute be

represented by the set A - {a, b, c,...} where the lowercase letters

McCLELLAND



AXIOMS FOR WEIGHTS m

represent specific attribute levels, and the other attribute by P =

{p, q, r,... The normalized weighted linear model,,then, is given

by

F(a, p) - wf(a) + (1-w)g(p),II
where w is the numerical weight associated with the first attribute

and f and g are real-valued functions representing evaluations of the

separate attributes.

Characterizing the Concept of Weight

When an individual must choose among alternatives varying on

several attributes, choice of the alternative with the "best" value on

all attributes is often precluded. The individual must then

compromise by assigning more weight to some attributes than to others.

The concept of weight reflects this process of compromise or

trade-off.

The definition of the weighted linear model presented above

captures five important properties of weight, properties which seem

essential to any representation of the psychological concept of

weight.

1. Weights are associated with attributes (or cues or factors)

rather than with specific attribute levels. That is, it is the

attribute that is "weighted" rather than any particular instance or

level of that attribute.

2. Weights are independent of the attribute evaluation functions

(i.e., f and g) in the sense that the choice of specific weights does

not constrain the possible functions for f and g, and the choice of

$
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AXIOMS FOR WEIGHTS 4

specific evalution functions does not constrain the possible weights.

It is thus logically possible for any set of weights to be combined in

the model with any evaluation functions. If this were not so the

"weight" could be absorbed into the evaluation function itself, and

the model would reduce to a simple adding model.

3. Weights interact with the evaluations of the attribute levels

to determine the overall evaluations. if the weights did not interact

with the evaluation functions we would have the following additive

model:

F(a, p) = w 1 + f(a) + w2 + g(p) =f(a) + g(p) + k.

Clearly, the "weights" in such a model reduce to a constant term added

to the output of the evaluation functions. The constant cannot affect

the relative evaluation of the alternatives, so the "weights" would

have no real impact. The interaction between weights and evaluation

functions in the weighted linear model 'is represented by

multiplication. The nature of the interaction is as follows: for a

specific attribute level to have a significant impact on the overall

evaluation, the evaluation of that attribute level must have a

reasonable magnitude and the weight associated with that attribute

must be appreciable. if either the magnitude of the evaluation is

trivial or the weight is close to zero then that attribute level would

have virtually no impact on the overall evaluation. (

4. The weights must sum to some constant K (in the above

definition, K - 1). Without this constraint the weighted linear model

again reduces to a simple adding model. That is, there is no (

McCLELLAND



AXIOMS FOR WEIGHTS 5

* compromise unless the weights are constrained.

5. In order for weights to be interesting parameters in. the

analysis of judgment and decision making, they must vary in two

*different aspects. First, weights must vary across attributes;

otherwise, the constant weights could be omitted from the model

without loss, reducing it to a simple adding model. Second, the

* weights must vary for the same person across situations and times

and/or vary across people. If such variation does not exist then

there is little point in estimating weights in either research or

applications involving the weighted linear model.

Conditions of the Axiomatization

The axiomatization presented below is applicable to the following

special case of the weighted linear model: (1) two and only two

attributes (vs. a variable number), (2) finite or limited and sparse

attribute levels (vs. infinite levels), and (3) cosunon

* attribute-level scale values in all evaluations of the alternatives.

The importance of each of these conditions will be discussed briefly.

Constant vs. variable number of attributes. Two methods have

* been used to examine variance in relative weights in judgment and

decision tasks. One is to vary "set-size"; that is, to vary the

number of attributes that are used to describe the alternative (e.g.,

Norman, 1976a,b). The logic of this method is that the weight on a

given attribute must increase when the number of attributes is

decreased, say, from k to k-i, because in either case the sum of the

weights must be the same; if fewer weights must add up to the same

IMcCLELLAND



AXIOMS FOR WEIGHTS

constant, then any individual weight must increase. The second method

keeps the number of attributes constant and examines either

differences across people or differences in judgments made by the same

person under different conditions or assumptions. For example, an

individual making evaluative judgments of automobiles might place

different weights on attributes such as comfort, safety, and fuel

efficiency when selecting a car for personal use than when making a

recommendation for a car to be used in a business fleet. The

axiomatization provided here specifies a constant number of attributes

and therefore cannot be used with set-size research. Such research

has been limited primarily to information integration theory (see

Anderson, 1974).

Finite vs. infinite case. An axiomatization could be

constructed for the infinite case--assuming dense alternatives and

attribute levels--or for the finite case, assuming limited and sparse

alternatives. There are advantages and disadvantages to both

approaches. Axioms for the infinite case often lead to a better

understanding of the representation and of its relationship with other

measurement structures. However, axioms for the infinite case are

often not empirically testable in the finite designs actually used.

Although the finite case usually leads to a set of

empirically-testable axioms, there is often no finite set of axioms

sufficient for all cases (e.g., Scott & Suppes, 1958)h that is, the

number of axioms depends upon the number of attributes and the number

of levels on each attribute, we have chosen the finite case for our

McCLELLAND
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*analysis because we want empirically-testable axioms in order to

determine whether it is possible both theoretically and practically to

measure weights.

Common attribute-level scale values. As noted above, any

evaluation of an alternative is the result of an interaction of the

evaluations (scale values) of the attribute levels with the weights.

This implies that the concept of weight--and the task of providing an

axiomatization for the weighted linear model--is meaningless unless

common attribute-level scale values are assumed to hold across

different people and/or across the evaluations made by the same person

under different conditions. This is a commonly-made assumption in

judgment and decision-making research. For example, Anderson (1973)

notes that a method he has frequently used to estimate weights

requires "an assumption that the scale values, or at least their

differences, are constant . . . (p. 91)." The import of this

assumption is discussed in more detail later.

Luce's axiomatization. Luce (1980) provides an axiomatization

for the weighted linear model in the infinite case with variable

numbers of attributes. Later in this paper we compare our results to

his in order to determine whether the choice of one case or another

has any important consequences.

An Example

An example will provide a basis for understanding how the axioms

work. The focus of this example is the evaluation of the desirability

of nine alternative prizes (comodity bundles) for a competition. The

McCLELLAND
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nine alternatives (listed in Table 1) constitute the set of all

possible combinations of 0, 2, or 5 phonograph records with 0, 1, or 5

books. The judge's task is to rank order the nine alternatives.

Given two sucn rank orders, is it possible to determine which U

represents the greater weight on, say, the record attribute?

If the judge places almost all the weight on records, then the

following lexicographic ordering would be obtained: ABCDEFGHI. If

instead all the weight is placed on books, the ordering would be

ADGBEHCFI. Other orderings would represent intermediate weightings

between these two extremes. This suggests using the number of pair

reversals between a given ordering and one of the lexicographic

orderings as an ordinal measure of distance. Such a measure could

then be used to compare the relative weighting implied by two

orderings, assuming that the evaluation functions used to generate

each ordering were the same. For example, consider the following two

orderings:

SI: A B C D E G H F I

S2: A B D G E C H F I

These orderings might be from two different people or from the same

person at two different times. The ordering Si is two pair reversals

(F-H and F-G) from the lexicographic ordering which places almost all

the weight on records, while S2 is six pair reversals away. Thus, SI

appears to place greater weight on records than does S2.

The goal of the axiomatization is to specify how and when a

common representation can be derived for a set of orderings (SI, S2,

McCLELLAND



AXIOMS FOR WEIGHTS 10

that would occur as increasing weight is placed upon the book

attribute.

Parallel to unfolding theory. The problem of developing an

axiomatization for the weighted linear model is essentially equivalent

to answering the following question: What are the necessary and

sufficient conditions on a set of orderings (such as those in Table 2)

that would allow construction of a graph such as Figure 1? Readers

familiar with unfolding theory (Coombs, 1964) will note the strong

similarity between our ordering of pair reversals and the ordering of

midpoints in unfolding theory. The problem in unfolding theory is to

describ- the-conditions necessary for a set of individual orderings

("I-scales") to be "unfolded" so that they can all be represented in

terms of a common or joint scale ("J-scale") of stimuli; each

individual ordering is represented by an interval (a region between

two adjacent midpoints) on the joint scale. Similarly, the problem

here is to describe the conditions necessary for a set of individual

orderings to be "unfolded" into a common or joint space (e.g.,

Figure 1) involving two stimulus scales, one for each attribute; an

individual ordering is represented by an interval (a region between

two adjacent intersections) on a line between the two scales. Thus,

we should expect to find many similarities between the two problems.

For a set of I-scales to be unfolded, they must all end with one

of only two stimuli, the stimuli which define the ends of the J-scale.

A similar constraint is obvious here. All orderings must begin with

the same alternative and all orderings must end with the same

McCLELLAND
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alternative. Since it is assumed that the evaluation functions are

the same for all orderings, it is impossible for a change in weighting

to affect the relative position of either the first or last

alternatives. This is apparent in Figure 1. Thus, the first and last

choices for all orderings must be identical.

Another important diagnostic for unfolding is that two I-scales

from a common quantitative J-scale cannot imply different midpoint

orderings. A similar condition applies to the weighted linear model.

Two orderings cannot imply different orderings of the intersections if

a common representation exists. For example, consider the following

two orderings:

S3: AB CD EG FH I

S4: ADB EC F GH I

S3 has one pair reversal and thus must be one intersection to the

right of the lexicographic ordering ABCDEFQII; that is, S3 implies

that FG is the first intersection. S4 has three pair reversals,

implying that it must be further to the right than is S3 and thus to

the right of the FG intersection. However, the absence of a reversal

between F and G in S4 implies that S4 is to the left of the FG

intersection. This obviously is an impossible set of conditions; S4

cannot be on both the left and right sides of the FG intersection. S3

and S4 thus imply different orderings of the intersections. They are

incompatible in terms of the weighted linear model and cannot both be

represented on one graph like Figure I.

The above example suggests that we want a set of axioms that will

McCLELLAND



AXIOMS FOR WEIGHTS 12

ensure that we can construct a transitive ordering of the

intersections. The example also suggests a very simple but powerful

empirical test of whether a representation consistent w-.th the

weighted linear model can be constructed: If ordering X has more pair

reversals (relative to a lexicographic ordering) than ordering Y, then

all the pair reversals contained in Y must also be contained in X. In

other words, if ordering X has x pair reversals and ordering Y has y, C

then there must be exactly ix - y i pair reversals between orderings X

and Y. The following axiomatization formalizes and extends this

simple empirical test.

The Axioms

Four axioms are required for the two-attribute case.* We begin

with the following primitives:

A {a, b, c, ... I and P ={p, q, r, ... ) and

1= ~7'j ' 7*k

A and P are sets representing the attributes and a, b, c, etc. are

specific attribute levels. I is a set of binary relations each of

which is defined on A x P. Where it will not cause confusion, we will

simply use i, J, k, etc. to refer to these binary relations. (These

binary relations, which we hope will be transitive orderings of the

alternatives, may be generated by the same person at different times

or by different people.) The following definition establishes the

representation we are seeking.

Definition: <<A x P, I>> is a weighted linear structure for two

attributes if and only if there exist real-valued functions f and g

McCLELLAND



AXIOMS FOR WEIGHTS 13

defined on A and P, respectively, and real parameters wi in the

interval [0, 1] for all i in I such that

i) (a, p) 3 i (b, q) iff F(a, p) _ F(b, q), and

ii) F(a, p) = wif(a) + (1-wi)g(p).

That is, a weighted linear structure exists i' and only if all the

orderings can be represented by a comon set of evaluation functions

with only the weight parameter varying across orderings.

Axiom 1: Within-ordering additivity

satisifes the axioms of additive conjoint measurement

for all i in I.

For any single ordering we can define f'(a) = w.f(a) and g'(p) =1

(1-w.)g(p) so that (ii) in the above definition reduces to the
1

simple additive model. Thus, any single ordering must satisfy the

axioms of additive conjoint measurement (Krantz, Luce, Suppes, &

Tversky, 1971).

Axiom 2: Cross-orderinq monotonicity

For all a, b in A; p, q in P; and i, j in I:

i) (a, p) > (b, p) implies (a, p) >j (b, p)

ii) (a, p) >ji (a, q) implies (a, p) j (a, q).

If all the orderings are to be represented by the same evaluation

functions then the rankings of rows and columns in the A x P matrix

must be the same in each ordering because multiplying the evaluation

functions by positive weights cannot possibly reverse the order.

Formally, (a, p) > (b, p) implies

wif(a) + (1-wi)g(p) > wif(b) + (1-wi)g(p), or f(a) > f(b).

McCLELLAND
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Because this last inequality does not depend upon the ordering i, it

must be true for all orderings, hence Axiom 2(i). Axiom 2(ii) is

equally trivial. 0

Axiom 3: Cross-ordering cancellation ("Weighting axiom")

i) If there exists an ordering such that

(a, q) >i (b, p) and (c, p) *i (b, q) then (-

(b, s) >. (c, r) implies (a, s) >. (b, r)

for all a, b, c in A; all p, q, r, s in P; and all i, j

in I.

ii) If there exists an ordering such that

(a, q) >. (b, p) and (b, q) >i (a, r) then

(c, r) >. (d, q) implies (c, q) >. (d, p)

for all a, b, , d in A; all p, q, r in P; and all i, j

in I.

(Note: (a, q) > (b, p) means not (b, p) , (a, q).I

Axioms 1 and 2 ensure that it makes sense to consider an ordering of

intersections. Axiom 3 does most of the work of ensuring that the

ordering is transitive. Because of its importance and because it

implies the simple empirical test described above, it seems reasonable

to label Axiom 3 the "weighting axiom".

Axiom 3 can be explained in the context of the record-book

example. Let r = p and a = q. Then Axiom 3(i) simply states that if

F - (b, p) and H - (a, q) have been reversed [i.e., (a, q) 2,(b, p)]

but C - (c, p) and E - (b, q) have not, then F and H also must be

McCLULLAND



AXIOM4S FOR WEIGHTS 15

reversed in any other ordering in wvhich C and E have been reversed.

To state this differently, the first line of Axiom 3(i) implies that

the CE intersection is to the right of the FH intersection. The

second line of Axiom 3(i) then requires that any ordering to the right

of the CE intersection also must be to the right of the FH

intersection. Thus, Axiom 3 precisely describes the empirical test

described above.

Axiom 3 also imposes additional constraints on the ordering of

the intersections. Continue the example and let s =r and r =q.

Axiom 3(i) then requires that in any ordering in which B = (c, q) and

D = (b, r) have been reversed, E = (b, q) and G =(a, r) also must be

reversed. That is, if the FH intersection is before (to the left of)

the CE intersection, then the EG intersection must come before the BD

intersection--crossing the BD intersection requires crossing the EG

intersection as well. Further, let a -r and r = q; then Axiom 3(i)

requires that the FG intersection must come before the CD

intersection. These requirements reduce the number of possible

intersection orderings consistent with the weighted linear model and

given orders of the attribute levels from 91 to 48, a finding

discussed later. Not all of these implications of Axiom 3(i) are

obvious from the example. The following proof of the necessity of

Axiom 3(1) justifies these results as well as the name "cancellation".

Proof of Necessity of Axiom 3(i):

if (a, q) >~ (b, p) and (c, p) > bq then there

exists w such that

McCLELLAND
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wf(a) + (1-w)g(q) > wf(b) + (1-w)g(p) and

wf(c) + (1-w)g(p) > wf(b) + (1-w)g(q).

Adding these two inequalities yields

w[f(a) + f(c)] + (1-w)[g(p) + g(q)) > w[2f(b)] + (1-w)[g(p) + g(q)].

Cancelling the common term (1-w)[g(p) + g(q)] gives

w[f(a) +f(c)] > w[2f(b)].

Assume that w > 0. (If w = 0, then the first two inequalities reduce

to g(q) > g(p) and g(p) > g(q) which imply g(p) = g(q), leading to a

trivial realization of the weighted linear model.) Then, dividing by

w, the previous inequality is equivalent to

f(a) + f(c) > 2f(b).

Now if (b, s), >. (c, r) and if, contrary to Axiom 3(i),

(b, r) I. (a, s), then there exists z such that
ff

zf(b) + (1-z)g(s) > zf(c) + (1-z)g(r) and

zf(b) + (1-z)g(r) > zf(a) + (1-z)g(s).

Performing the same cancellation as above yields

2f(b) > f(a) + f(c).

However, this last result contradicts the implication derived above

that f(a) + f(c) > 2f(b). Thus assuming that (b, r) > (a, s)

leads to a contradiction; hence, Axiom 3(i). The proof for

Axiom 3(11) is similar.

Figure 2 shows a graphic representation of Axiom 3. The single

arrows represent the conditions of the axiom; the head of each arrow

indicates the higher-ranked of the two cells connected by the arrow.

The double arrow represents the implication.

NcCLZLLAND[ -JJA
MEN"



AXIOMS FOR WEIGHTS 17

Even though Axiom 3 ensures that the ordering of the

intersections will be transitive, it is not sufficient to enable the

construction of a weighted linear representation. The proof that

Axioms 1, 2, and 3 are not sufficient is rather tedious. However, we

present it below because it leads directly to Axiom 4 and because it

also suggests how the actual scaling of the parameters might be

accomplished.

Proof that Axioms 1, and 3 are not sufficient:

Assume, consistent with Axiom 2, that

Cc, p) >r. (b, p) >.(a, p) for all orderings in I and for all p in P,

and that

Ca, r) >~.(,q ~.(,p for all orderings in I and all a in A.

Now consider the following pair comparisons from three different

orderings:

(a, q) > i (b, p) and Cc, p) >, (b, r);

Ca, r) >. Cc, p) and (b, q) >(a, r)1

Cb, r) >k Cc, q) and (c, p) >k Ca, q)

None of these pairs violates any of the axioms of additive conjoint

measurement implied by Axiom 1. Also, it can be verified that there

are no violations of Axiom 3. Yet, as will be shown below, these

three orderings cannot be accoemmodated simultaneously within the

context of a weighted linear model.

If the weighted linear model is assumed to apply, then

(a, q) >i (b, p) implies that there exists a w such that

wf(a) + (1-w)g(q) > wf(b) + (1-w)g(p).

McCLELLAND



AXIOMS FOR WEIGHTS 18

Simple algebra reduces this to

w(f(b) - f(a) + g(q) - g(p)] < g(q) - g(p).

The term inside the brackets on the left must be greater than zero

because of the above assumptions about the ordering of attribute

levels. Thus,

w < [g(q) - g(p)] / ff(b) - f(a) + g(q) - g(p)].

To simplify notation, let x = f(b) - f(a), y = f(c) -f(b),

u = g(q) - g(p), and v = g(r) - g(q) so that x + y = f(c) - f(a) and

u + v = g(r) - g(p). Because of the assumptions about the attribute

orderings, x, y, u, v > 0. Thus,

w < u/(x + u).

Similarly, (c, p) >.r (b, r) for ordering i implies that for the

same w

wf(c) + (1-w)g(p) > wf(b) + (1-w)g(r)

which, using the above notation, reduces to

w > (u + v)/(y + u + v).

Because w must be the same in the last two inequalitites, it follows

that

(u + v)/(y + u + v) < u/(x + u) or

x(u + v) < yu.

A similar exercise for the two pair comparisons from ordering j

yields the inequality

yv < xu.

Note that these last two inequalities involve only the parameters

x, y, u, and v, which correspond to differences between scale values,
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and that they do not depend upon the particular weight associated withI
the ordering. Later we will show how such inequalities can be solved

to yield a numerical scaling. Because these inequalities do not

depend upon the weight they can be added to obtain, after appropriate

cancellations,

v(x + y) < yu.

Finally, we can apply the same procedures to the two pairt
comparisons from ordering k. This yields

yu < v(x + y)

which directly contradicts the previous inequality. Thus, the three

orderings i, j, and k, although consistent with Axioms 1, 2, and 3,

are not compatible as a group with the weighted linear model. The

following axiom excludes this particular incompatibility.

Axiom 4: Three-ordering compatibility.

For all a, b, c in A; and all p, q, r in P:

i) if there exists an ordering i in I such that

(a, q) > (b, p) and (c, p) -i (b, r)

and if there exists an ordering j in I such that

(a, r) > (c, p) and (b, q) >, (a, r)

then for all orderings k in I

(b, r) >k (c, q) implies (a, q) >k (c, p).

Axiom 4(i) excludes the incompatibility demonstrated above.
S

Unfortunately, there are seven other similar incompatibilities and

there does not appear to be a general expression that can be applied

to all; thus, Axiom 4 has seven other parts. We state these
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additional parts in abbreviated form; the full statement would

parallel that in Axiom 4(i).

Axiom 4: (continued)

ii) (a, r) > (b, q) and (c, p) >.,(b, r) for ordering i, and

(,r) > (c, p) and (b, p) >,. (a, q) for ordering j, then

(b, q) > (c, p) implies (a, r) > (c, q) for ordering k.

iii) (a, r) > (b, p) and (c, p) >, (a, r) for ordering i, and

(b, r) > (c, p) and (b, p) >,(a, q) for ordering j, then

(a, q) > (c, p) implies (b, r) > (c, q) for ordering k.

iv) (b, r) > (c, p) and (c, p) >, (a, r) for ordering i, and

(a, q) > (b, p) and (c, p) >,(a, r) for ordering j, then

(a, r) > (c, q) implies (b, q) > (c, p) for ordering k.

V) (b, r) > (c, q) and (b, p) >, (a, r) for ordering i, and

(a, r) > (c, p) and (c, p) , (b, q) for ordering j, then

(a, q) > (b, p) implies (a, r) > (c, q) for ordering k.

vi) (b, q) > (c, p) and (b, p) >, (a, r) for ordering i, and

(a, r) > (c, p) and (c, p) >, (b, r) for ordering j, then

(a, r) > (b, q) implies (a, q) > (c, p) for ordering k.

vii) (b, q) > (c, p) and (c, p) >, (a, r) for ordering i, and

(a, r) > (b, p) and (c, q) >. (b, r) for ordering j, then

(a, r) > (c, q) implies (a, q) > (b, p) for ordering k.

viii) (a, r) > (b, p) and (c, p) >, (b, q) for ordering i, and

(b, r) > (c, q) and (c, p) ) (a, r) for ordering j, then

(a, q) > (c, p) implies (a, r) > (b, q) for ordering k.
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The TheoremsI
The major results can be stated in terms of three theorems.

Theorem 1: Necessary Conditions. If <<A x P, I>> is a weighted

linear structure, then Axioms 1-4 must be satisified.

Theorem 2: Sufficient Conditions. If A and P both contain

exactly three elements, then Axioms 1-4 are both necessary and

sufficient to establish that <<A x P, I>> is a weighted lineax

structure.

Theorem 3: Uniqueness. If real-valued functions f and g and

parameters W = {w i , wj, ... } provide a numerical

representation for a weighted linear structure, then the following

transformations provide another:

f' =lf + 1' '1 > 0

01
ge " 21 + (c2', ; 2i> 0

That is, the scale values given by f and g are unique up to a positive

linear transformation and the weights are unique only up to a

nonlinear, but monotonic, transformation.

Proofs: Theorem 1 was essentially proved as the axioms were

introduced above. Theorem 3 involves substituting the specified

transformation into the weighted linear model as defined above and

then reducing the resulting structure to the original. This simple

algebraic proof is omitted. The proof of Theorem 2 is an inelegant,

brute-force procedure for considering all possible cases. While we

have done all the constructions described below, we present the proof
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in outline only.

Proof of Theorem 2. Axioms 1 and 2 ensure that it is meaningful

to talk about intersections and that, in particular, for a complete

set of orderings (e.g., one ordering from each interval in Figure 1)

there are exactly nine intersections. Each ordering of the

intersections is a potential data structure (i.e., each might

correspond to a complete representation). Axiom 3 guarantees that the

ordering of the intersections is a weak order. However, there are

91 = 362,880 possible weak orderings of intersections, many of which

involve incompatibilities. An examination of each possible ordering

(using backtrack programing techniques such as those used in

McClelland, 1977, to count additive orderings) demonstrates that the

application of Axiom 3 reduces the number of compatible sets of

orderings from 91 to 48. This again shows the importance of Axiom 3

and justifies its label as the "weighting axiom". Application of

Axiom 4 eliminates exactly eight orderings (corresponding to the eight

parts of Axiom 4), leaving only 40 intersection orderings. These 40

orderings each generdte a system of nonlinear inequalities (like

obtained in the proof for Axiom 4), all of which have solutions.

Hence, there are exactly 40 complete sets of alternative orderings,

each corresponding to an ordering of intersections, that are

consistent with the weighted linear model. Thus, Axioms 1-4 are

sufficient for the 3 x 3 case of the weighted linear model.

Theorem 2 for the 3 x 3 case and its proof are not very

interesting in themselves other than to show that this relatively
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small set of axioms does cover all the possibilities for the 3 x 3

case. For comparison, Axioms 1-4 for the weighted linear model are

comparable to the monotonicity and double cancellation axioms for

additive conjoint measurement in that they are both necessary and

sufficient for the 3 x 3 case. The most interesting aspect of -te

proof of Theorem 2 is the construction of numerical representations

for the 40 consistent sets of orderings. Below we illustrate how this

scaling can be accomplished using the record-book orderings from

Table 2.

Scaling Procedures

Application of Axioms 1-4 to the orderings of alternatives in

Table 2 ensures that it is possible to estimate the weights and scale

values associated with the orderings. The ordering of pair reversals

corresponds to the ordering of intersections which is listed in the

second column of Table 3. Because Theorem 3 indicates that the scale

values will be unique only up to a linear transformation, we will

scale the differences between attribute levels and fix the units of

each scale in the following manner: Let f(c) - f(a) = x + y = 1 and

g(r) - g(p) = u + v 1, where x, y, u, and v are as defined above, so

that y = 1 - x and v I - u.

Next, solve for the value of the weight parameter at each

intersection. For example, at the first intersection (CD),

(c, p) w (b, r) or

wf(c) + (1-w)g(p) wf(b) + (1-w)g(r)

which with the above substitution reduces to

w = i/(2-x).

McCLELLAND

t.



AXIOMS FOR WEIGHTS 24

The third column of Table 3 lists the corresponding expression for the

weight for each intersection.

The ordering of the intersections also orders the weights. That

is,

I > w1 > w2 > ... > w8 > w9 > 0.

Substituting the expressions for the weights yields a system of

nonlinear inequalities. For example, w1  > w2  implies that

1/(2-x) > 1/(l+x) or equivalently, x > .5. For the ordering of

weights in Table 3 this system reduces to the following set of

nonredundant inequalities:

1- x > x(1-u)

u < 1/2

x > 1-u.

Many standard programming techniques are available for finding

solutions to such systems of nonlinear inequalities. Figure 3

presents a graphic solution. The solution space (i.e., the possible

values for x and u) is the shaded area bounded by the three

inequalities. Any point within the solution space represents a

numerical scaling consistent with the orderings of Table 2. For

example, the point x = .6, u = .45 is in the solution space. In terms

of the evaluation function this means that the distances between

attribute levels are as follows: 0 to 2 records = .6, 2 to 5 records

- .4, 0 to 1 books - .45, and I to 5 books = .55. These are in fact

McCLELLAND
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the values that were used to construct Figure 1.

The weights which define the boundaries between orderings are

expressed in Table 3 in terms of x and u. Substituting x = .6 and u =

.45 provides the numerical estimates of the boundary weights listed in

the fourth column of Table 3. In terms of Figure 1, these weights

represent the distance of the intersection from the line representing

zero weight on records.

Thes.- scale values can also be used to characterize the

individual orderings. For example, consider ordering #4 in Table 2.

Because CD, FG, and BD have been reversed, this ordering must be in

the slice between the third and fourth intersections. Thus, the

weight associated with this ordering is between the corresponding

weights for those two intersections, .53 and .58. (Note that for all

but the first and last slices the range for the weight is fairly

sm.)i) Let's choose .55, the midpoint of the range, to represent the

fourth ordering. To fix the origins of the two scales let

f(a) = g(p) = 0. Then the numerical evaluation can be calculated for

each alternative using the weighted linear model. In this case, A =

1, B - .75, C = .55, D = .78, E = .53, F = .33, G = .45, H = .20, and

I - 0. This set of scale values does indeed reproduce the ordering of

the alternatives: ADBCEGFHI. Scale values for the other orderings

can be computed similarly.I
Discussion

Our discussion is in two parts: (a) a comparison of the present

axiomatization with Luce's (1980) axiomatization of the averaging

McCLELLAND
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model, and (b) a consideration of implications of this axiomatization

for some of the important disagreements among various approaches to

judgment and decision making.

Comparison to Luce,(1980). Luce provides a set of axioms for the

averaging and adding representations of functional measurement.

Whereas our axioms apply only in the case of exactly two attributes,

Luce allows the number of attributes to vary. That is, an individual

might be asked to compare two alternatives described by different

numbers of attributes. In our axioms, an individual is always

presumed to be comparing two alternatives described by the same two

attributes. Both types of tasks have been used in judgment and

decision making studies so it is useful to have an axiomatization for

each.

Another way in which the two axiomatizations differ is that Luce

considers the infinite case while our results (particularly Theorem 2)

pertain mostly to small, finite cases. As noted above, there are

advantages and disadvantages to each approach. The advantages and

disadvantages are clearly illustrated by the two axiomatizations. The

infinite case often leads to a better theoretical understanding of the

measurement structure involved. In this instance, Luce was able to

show that with appropriate definitions the averaging model is a

special case of the conditional expected utility model presented in

Krantz, Luce, Suppes, and Tversky (1971). By showing the strong

relationship between the weighted linear model and another measurement

structure, a better understanding is immediately obtained, and many
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results from the other measurement structure can be applied. Such

strong results are sometimes, but not often, obtained with the finite

case. We did suggest that there was an analogy between our axioms and

unfolding theory, but the link is much weaker than the link obtained
t

by Luce.

On the other hand, an important disadvantage of considering the

infinite case is that the resulting axioms are often not testable

empirically. Luce uses the standard Archimedean axiom and a

restricted solvability axiom which are not directly testable; rather,

one decides on the basis of the experimental context whether they are

appropriate (this issue is discussed in Krantz, et al., 1971, and

Krantz & Tversky, 1971). Further, Luce's key axiom, which

distinguishes adding from averaging, is defined in terms of

equivalences. A direct test of this axiom would be very difficult

experimentally because it requires finding two alternatives, defined

in terms of distinct sets of attributes, which the decision maker

judges to be equivalent. For the averaging model to hold, the

decision maker must judge the union of the two alternatives to be

equivalent to either single alternative. Even in laboratory studies

of judgment and decision making, finding such equivalences would be

extremely difficult. In contrast, the axioms presented here are

easily and directly testablei several such tests were illustrated

above. However, as is true with all finite axiomatizations, our

axioms are undoubtedly not sufficient for cases with either more than

two attributes or more than three attribute levels. The necessary

$
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conditions would of course still apply to larger cases.

Despite the differences in the two axiomatizations, the

implications and conclusions from both are virtually identical. Most

importantly, both demonstrate that the adding and averaging models are

distinguishable (with only ordinal data) and both show that with

appropriate operationalizations and with enough data, weights can be

identifiable parameters. That is, weights need not be mere scaling c

constants. We discuss this issue in greater detail below.

Implications. It is hoped that the axiomatization presented here

will aid in identifying and exploring common ground and disagreements

among the various approaches to judgment and decision making. Not all

such implications of the results can be considered in a paper of this

scope. Instead, we present as examples three implications of the

axiomatization of the weighted linear model. These implications

pertain to (a) the identifiability of weights, (b) the uniqueness of

estimates of weights and scale values, and (c) the effect of the range

of attribute levels on weight.

1. The identifiability of weights. Our axiomatization provides

clear evidence that (in the context of the weighted linear model)

weights can be more than mere "scaling constants" and that they need

not be "empirically empty parameters". The results show that weight

is an identifiable parameter--numerical estimates of the value of a c

weight can be derived from data.

Of course, just because weight can be an identifiable parameter

does not mean that weight will be meaningful in all the diverse
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operationalizations of the weighted linear model. Indeed, our results

and those of Luce (1980) strongly suggest that meaningful weights

cannot be obtained by one data collection method commonly used in

judgment and decision making research--presenting alternatives defined

by a fixed set of attributes to one person in one situation. Thus,

Keeney and Raiffa (1976) are correct when they emphasize that the

weight parameters obtained through this method are indeed no more than

scaling constants. However, our results suggest that the weight

parameters could be more than scaling constants if additional

information were collected. For example, weights could be estimated

if the decision maker made additional choices under different

conditions. Or it might be possible to construct a representation for

several different decision makers for the same decision problem.

The ability to estimate meaningful weights is achieved at a

price, however, in this axiomatization. The price is that the same

scale values or evaluation functions must be used for all orderings

whether those orderings are from one or many people. There are

clearly many judgment and decision problems for which it would be

unreasonable to expect that the same scale values would apply to all
*

orderings. Indeed, several studies using the approach of social

judgment theory (e.g., Balke, Hammond, & Meyer, 1973; Rohrbaugh &

Wehr, 1978.) have shown that policy makers sometimes have very
£

different evaluation functions for individual attributes; in some

cases they do not even agree on the monotonic ordering of the

attribute levels (in violation of Axiom 2). For example, some urban

McCLELLAND
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policy makers always prefer more growth while others prefer moderate

amounts of growth to either extreme--a clear violation of

monotonicity. However, it is not apparent (at least not from this

axiomatization) whether it is meaningful to compare weights when the

attribute evaluation functions are very different.

On the other hand, there are judgment and decision problems for

which it would be reasonable to expect common scale values. This

expectation would certainly be reasonable if all the orderings were

produced by the same person under different conditions. For example,

a person asked to evaluate a number of automobiles under each of a

number of assumptions about future supplies of gasoline might well use

the same scale values (for the levels of such attributes as comfort,

fuel efficiency, and safety) for each set of evaluations, with only

the weight accorded each attribute varying with the fuel supply

scenario. Several information integration studies (e.g., Anderson,

1964; Shanteau, 1972; Weiss & Anderson, 1969) have shown implicitly

that scale values are constant across one type of change in the

situation in which judgments are collected--a change in the serial

position of the attibutes. Also, there are judgment and decision

problems for which the assumption that people differ only in their

weights is not unreasonable. To reiterate, even when common scale

values can be assumed, our axiomatization shows only that weights

might be estimablei whether or not they actually can be estimated is

an empirical question to be decided by testing the axioms.

2. Unigueness of weights and scale values. The uniqueness

MCCLELLAND
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theorem (Theorem 3) has some surprising implications. In additive

conjoint measurement, the functions for each attribute are unique only

up to a positive linear transformationi this is also the case for the

weighted linear model presented here. However, in additive conjoint

measurement the two functions have the same unit of measurement (i e.

if one scale is multiplied by a constant then the other must be

multiplied by the same constant). For the weighted linear model the

two functions need not have the same unit of measurement--each could

be transformed by multiplying by different positive constants.* The

reason is that an appropriate transformation of the weight (described

in Theorem 3 in terms of the two multiplicative constants) can always

make the scales commensurate again. That is, of course, precisely the

role t..iat the weights are supposed to play both mathematically and

psychologically. However, this also means that the weights are unique

only up to a nonlinear, but monotonic, transformation. A major

implication of this characteristic is that certain types of statements

about "relative weights" cannot be meaningful. For example, according

to the uniqueness theorem, it makes no sense to say that one person

places a greater weight on attribute A than on P. The problems

involved with such relative comparisons are best illustrated by

returning to the record-book example.

Theorem 3 says the evaluation functions are unique only up to a

positive linear transformation. if the evaluation function for the

book attribute is transformed so that f~c) - f(a) - 10 instead of 1

(i.e., all scale values are multiplied by 10) then the nine boundary
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weights listed in Table 3 become .985, .945, .936, .923, .916, .911,

.892, .855, .840. Thus, all orderings (except possibly the tenth)

appear to place greater weight on records than on books because all

the boundary weights are greater than .5. It is thus clear that the

weights are dependent upon the particular interval scale chosen for

the evaluation functions. Hence, statements about relative weights

across attributes are not meaningful because they can always be

reversed by an appropriate choice of a permissible linear

transformation. Keeney and Raiffa (1976, pp. 271-273) provide a

similar example of the impossibility of such relative comparisons.

Meaningful statements about relative weights across orderings are

possible. For example, if ordering S1 has fewer pair reversals

(relative to a lexicographic ordering) than S2, it is meaningful to

say that SI places more weight on attribute A than does S2.

The implications of the uniqueness theorem are surprising because

the restrictions on the types of relative comparisons that are

possible are exactly opposite to what is generally assumed. Relative

comparisons of weights across attributes are comaonly reported, while

relative comparisons across situations or people are less frequent.

3. Range effects. Much recent debate has centered on whether

changes in the ranges of attribute levels can, should, or must affect

estimates of weight (e.g., Levin, Kim, & Corry, 19761 Gabrielli & von

Winterfeldt, 1978). While the issue may be in doubt for some

operationalizations of the weighted linear model, the answer is clear

for our axiomatization. Consider the representation of a weighted
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linear model in Figure 1. If a fourth attribute level were added to

each attribute above the current maximums (say, eight records and ten

books), then it is obvious that the original nine intersections would

be unchanged. In particular, the intersections would still occur in

the same order. Of course, there would now be additional

intersections inserted into the order: these new intersections would

allow finer discriminations because there would be 17 slices instead

of ten. However, this is not cause for the decision maker to behave

diferently toward the original nine alternatives.

To put it another way, if the weights are to be estimated from a

given 3 x 3 subset of the attribute levels, only the orderings within

that subset will affect the weights. Thus, as long as the orderings

within the subset remain the same it makes no difference in what

larger set the subset is included--the weights will remain the same.

of course, it is an empirical question as to whether exposing a

decision maker to a larger range will cause a change in weights (e.g.,

as might result from including death as one extreme for an attribute).

The axiomatization, in fact, suggests how to do this experiment:

embed a given 3 x 3 subset in larger sets which vary the range of the

attribute levels. If the orderings within the 3 x 3 subset do not

vary across sets, then there has not been a true change in weights.

F if the evaluation functions change with attribute-level range, the

orderings will violate the axioms. If the orderings within the subset

change but remain consistent with the axiomatization, then the scaling

procedures outlined above can be used to track the changes in weight

as a function of the changes in range.
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Table I

Alternatives and attribute levels for the record-book example

Alternative Records Books
t

A =(c, r) 5 5

B (c, q) 5 1

C (c, p) 5 0

D (b, r) 2 5

E (b, q) 2 1

F (b, p) 2 0
I

G =(a, r) 0 5

H (a, q) 0 1

I i(a, p) 0 0

$
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Table 2

Orderings of alternatives defined by the ordering of

intersections depicted in Figure I (The new pair reversal

in each ordering is underlined)

No. ordering

1 A B CD EFG HI (high weight on records)

2 AB D CEF GHI1

3 A BD CE GFH I

4 A DB CE GF HI

5 A D BECG FH I

6 AD B EG CF HI

7 A DB GE CFH I

8 AD BG E C HFI

9 ADG B EC HF I

10 A DGDBE H CFI (highvweight on books)
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I

Table 3

Ordering of intersections and the corresponding weights

derived from the alternative orderings of Table 2

Boundary Weight
No. Intersection Weight Estimate

1 CD 1/(2-x) .71

2 FG 1/(l+x) .63

3 BD (1-u)/(2-x-u) .58

4 CE u/(1-x+u) .53

5 CG 1/2 .50

6 EG (l-u)/(1+x-u) .48

7 PH u/(x + u) .43

8 BG (1-u)/(2-u) .35

9 CH u/(1+u) .31

J*

McCLELLAND
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Figure 1

A hypothetical scaling for the record-book example

Records Books

c=-5 A A 5=r
B ID

b= 2E

E 1 q

I I' H

Interval or slice 1 12 13 1 41516' 71 8 191 10

1I weight on records 0

0 weight on books 1
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Figure 2

Graphic representations of Axiom 3:

Cross-ordering compatibilityNe
Axiom 3(i)

p q r B

a a

b Ab

C C

Ordering i Ordering I

Axiom 3(11)

Sp q r p q r

a -c 
C

Ordering i Ordering I
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Figure 3

Solution space implied by the alternative orderings of Table 2
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